Free text search A full-text index includes one or more character-based columns in a table. These columns can have any of the following data types: char, varchar, nchar, nvarchar, text, ntext, image, xml, or varbinary(max) and FILESTREAM. Each full-text index indexes one or more columns from the table, and each column can use a specific language.
Step 1 - To use the free text search first we need to enable the feature during installation of the SQL Server.
Step 2 – Need to add index on the colom where we want to enable the full text search. Feature will not be enable till we do the step 1
[image:]
Step 3 – Select an index and click next
[image:]
Step 4 – Select the colom from the list and click next. Then the selected colom will be able to support full text search
[image:]
Step 5 – Sample Queries for the full text search.
 select * from Production.ProductDescription
SELECT Description
FROM Production.ProductDescription
WHERE ProductDescriptionID <> 5 AND
 CONTAINS(Description, 'Top AND spindle')
Sample
Full-text queries use a small set of Transact-SQL predicates (CONTAINS and FREETEXT) and functions (CONTAINSTABLE and FREETEXTTABLE). However, the search goals of a given business scenario influence the structure of the full-text queries. For example:
String should be in double quotes if space in string if we have to use contains.
SELECT Description
FROM Production.ProductDescription
WHERE ProductDescriptionID <> 5 AND
 CONTAINS(Description,”Snap Happy”)
We can also use and /or / <> operation with contains keyword like that CONTAINS(Description,”Snap OR Happy”)

Search with prefix
USE AdventureWorks2012
GO

SELECT Description, ProductDescriptionID
FROM Production.ProductDescription
WHERE CONTAINS (Description, '"top*"')
GO
The following example searches for any form of "foot" ("foot," "feet," and so on) in the Comments column of the ProductReview table in the AdventureWorks database:
USE AdventureWorks2012
GO

SELECT Comments, ReviewerName
FROM Production.ProductReview
WHERE CONTAINS (Comments, 'FORMSOF(INFLECTIONAL, "foot")')
GO
Configure and Manage Thesaurus Files for Full-Text Search – This needs to explore yet.

SQL Server Full-Text Search queries can search for synonyms of user-specified terms through the use of a Full-Text Search thesaurus. Each thesaurus defines a set of synonyms for a specific language. By developing a thesaurus tailored to your full-text data, you can effectively broaden the scope of full-text queries on that data.

File Location of Synonyms C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\MSSQL\FTData
File name – tsenu.xml and tsglobal.xml

Sp_lock – sp_lock maintains lock to prevent concurrent use of resources by different transactions.
Notes- no practical example done yet.

Syntax - sp_lock [[@spid1 =] 'session ID1'] [, [@spid2 =] 'session ID2']
[;]

Examples
A. Listing all locks
USE master;
GO
EXEC sp_lock;
GO

B. Listing a lock from a single-server process
The following example displays information, including locks, about process ID 53.

USE master;
GO
EXEC sp_lock 53;
GO
Sp_who Provides information about current users, sessions, and processes in an instance of the Microsoft SQL Server Database Engine. The information can be filtered to return only those processes that are not idle, that belong to a specific user, or that belong to a specific session.

sp_who [[@loginame =] 'login' | session ID | 'ACTIVE']

USE master;
GO
EXEC sp_who 'janetl';
GO

NOLOCK –
· The NOLOCK hint allows SQL to read data from tables by ignoring any locks and therefore not get blocked by other processes.
· This can improve query performance by removing the blocks, but introduces the possibility of dirty reads.

Example of SQL Server NOLOCK
Here is a query that returns all of the data from the Person.Contact table. If I run this query I can see there is only one record that has a Suffix value for ContactID = 12.
SELECT * FROM Person.Contact WHERE ContactID < 20
[image:]

Let's say another user runs the below query in a transaction. The query completes and updates the records, but it is not yet committed to the database so the records are locked.
-- run in query window 1
BEGIN TRAN
UPDATE Person.Contact SET Suffix = 'B' WHERE ContactID < 20
-- ROLLBACK or COMMIT
If you run the same query that was run above again, you will notice that it never completes, because the UPDATE statement run in "query window 1" has not yet been committed, so the locks are not released.
-- run in query window 2
SELECT * FROM Person.Contact WHERE ContactID < 20
If I run sp_who2 I can see that the SELECT statement is being blocked. I will need to either cancel this query or COMMIT or ROLLBACK the query in window 1 for this to complete. For this example I am going to cancel the SELECT query.
To get around the locked records, I can use the NOLOCK hint as shown below and the query will complete even though the query in window 1 is still running and has not been committed or rolled back.
-- run in query window 2
SELECT * FROM Person.Contact WITH (NOLOCK) WHERE ContactID < 20

Features
1. SQL server agent service in MSSQL
2. mail configuration to send success/Failure of any SQL server agent event
3. SQL profiler own monitoring tool
4. Can create Linked server between two or more servers
5. MSSQL is licensed and they provide support on enterprise edition.
6. Mirroring and always High availability feature
7. SSAS and SSRS tool also Microsoft provide with MSSQL for analysis tool and reporting tool.

Identify Item - How to create schema, No LOCK , Commit rollback and @@trancount

Best Practices
How to create schema – example CREATE TABLE [new].[DemoSchema] (ID INT IDENTITY(1, 1), Name VARCHAR(20));
· Always qualify objects by owner. (Get more details) Example – whenever stored procedure run then a cached plan is generated for the fast execution next time. always run by dbo. mystoredproc – Lets suppose if another user harry run the same procedure with only name mystoredproc then it find the object first then cached the another plan which will cause another cache If an existing plan is found, SQL Server reuses the cached plan and does not actually compile the stored procedure. However, the lack of owner-qualification forces SQL to perform a second cache lookup

· Do not use GOTO. –(Get more details in example)

Use of the GOTO statement is generally considered to be poor programming practice and is not recommended. Extensive use of GOTO tends to lead to unreadable code especially when procedures grow long
1DECLARE @Counter int;
 2SET @Counter = 1;
 3WHILE @Counter < 10
 4BEGIN
 5 SELECT @Counter
 6 SET @Counter = @Counter + 1
 7 IF @Counter = 4 GOTO Branch_One -- Jumps to the first branch.
 8 IF @Counter = 5 GOTO Branch_Two -- This will never execute.
 9END
10Branch_One:
11 SELECT 'Jumping To Branch One.'
12 GOTO Branch_Three; --This will prevent Branch_Two from executing.
13Branch_Two:
14 SELECT 'Jumping To Branch Two.'
15Branch_Three:
16 SELECT 'Jumping To Branch Three.

· Avoid CURSOR use because it's significantly slower. If necessary, always declare the correct type of cursor (FAST_FORWARD).

· Avoid SELECT INTO for populating temp tables. Create the table then use INSERT SELECT. –
SELECT * INTO #TempOrdersTable
FROM Orders (Not recommended)

Create and insert
INSERT INTO #TempPersonTable (Recommended)
VALUES
('Watson', 'Juan', 'Cleveland'),
('Baker', 'Dwayne', 'Fort Wayne'),
('Walker', 'Eric', 'Tucson'),
('Peterson', 'Bob', 'Indianapolis');

SELECT *
FROM #TempPersonTable;
· Always use ANSI join syntax.
Non ANSI Syntax
SELECT a.name,
 a.empno,
 b.loc
 FROM tab a,
 tab b
 WHERE a.deptno = b.deptno(+)
 AND a.empno = 190;
ANSI Syntax (recommended)
SELECT a.name,
 a.empno,
 b.loc
 FROM tab a,
LEFT OUTER JOIN tab b
 ON a.deptno = b.deptno
 WHERE a.empno = 190;
· Always check for object existence.
IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object_id (N'[dbo].[IsSomething]') AND OBJECTPROPERTY(id, N'IsFunction') = 1)

DROP function IsSomething
GO
· Use SCOPE_IDENTITY() instead of @@IDENTITY.
SCOPE_IDENTITY and @@IDENTITY return the last identity values that are generated in any table in the current session. However, SCOPE_IDENTITY returns values inserted only within the current scope; @@IDENTITY is not limited to a specific scope.
· Always check @@TRANCOUNT and commit/rollback as necessary.
when u don't use @@trancount, the error message of nested transaction stored procedure does not return the exact cause of error just reurtn "The rollback transaction request has no corresponding begin transaction",otherwise it gives exact cause of error, so its easy to handle the error with proper syntax.
`
Example begin tran
begin try
 ... just several lines of sql ...
 if @@trancount > 0 commit tran
end try
begin catch
 if @@trancount > 0 rollback tran
end catch

· Order DML to avoid deadlocks. (Need more time to explain)

· Always check @@ERROR and @@ROWCOUNT by assigning to a variable.
Returns the error number for the last Transact-SQL statement executed. Returns 0 if the previous Transact-SQL statement encountered no errors.
GO
UPDATE HumanResources.EmployeePayHistory
 SET PayFrequency = 4
 WHERE BusinessEntityID = 1;
IF @@ERROR <> 0
 BEGIN
 PRINT N'A check constraint violation occurred.';
 END
GO
· Always check sp return values. – While executing the sp check the return values with the type they returned if any

· Do not create cross-database dependencies. – Avoid cross DB dependency like inner joins or so. It is slow than using with in the same DB – (Need more time to show with example)

· Avoid table value UDF – performance problems.
A table function, also called a table-valued function (TVF), is a user-defined function that returns a table. You can use a table function anywhere that you can use a table. Table functions behave similarly to views, but a table function can take parameters.
CREATE OR REPLACE TABLE FUNCTION mydataset.names_by_year(y INT64)
AS
 SELECT year, name, SUM(number) AS total
 FROM `bigquery-public-data.usa_names.usa_1910_current`
 WHERE year = y
 GROUP BY year, name
· Avoid dynamic SQL – if necessary use sp_executesql over EXEC.
Static or Embedded SQL are SQL statements in an application that do not change at runtime and, therefore, can be hard-coded into the application. Dynamic SQL is SQL statements that are constructed at runtime; for example, the application may allow users to enter their own queries.
· Avoid using NULL values.
· In some cases they are not indexed.
· They make join syntax more difficult.
· They need special treatment for comparisons.
For string columns it might be appropriate to use "N/A", or "N/K" as a special value that helps distinguish between different classes of what could otherwise be NULL, but that's tricky to do for numerics or dates -- special values are generally tricky to use, and it may be better to add an extra column (eg. for date_of_birth you might have a column that specifies "reason_for_no_date_of_birth", which can help the application be more useful.
For many cases where data values are genuinely unknown or not relevant they can be entirely appropriate of course -- date_of_death is a good example, or date_of_account_termination.
Sometimes even these examples can be rendered irrelevant by normalising events out to a different table, so you have a table for "ACCOUNT_DATES" with DATE_TYPES of "Open", "Close", etc.
· Always specify columns; try to avoid "SELECT *". Exceptions include these two cases: "WHERE EXISTS (SELECT * ...)" and aggregate functions.
If we dont need all column then we should use column name to get all coloms.

Stored Procedures
Create procedure
CREATE PROCEDURE dbo.uspGetAddress @City nvarchar(30)
AS
SELECT *
FROM Person.Address
WHERE City = @City
GO

EXEC uspGetAddress @City = 'New York'

[bookmark: _GoBack]List procedure
SELECT name AS [Name],
 SCHEMA_NAME(schema_id) AS schema_name,
 type_desc,
 create_date,
 modify_date
FROM sys.objects
WHERE type ='p'

Use sys.objects system catalog view
SELECT name AS [Name],
 SCHEMA_NAME(schema_id) AS schema_name,
 type_desc,
 create_date,
 modify_date
FROM sys.objects
WHERE type ='u'

COALESCE function use to remove null
SQL SCOPE_IDENTITY() function

SELECT IDENT_CURRENT('users') AS IdentityValue

SELECT TOP (10) IDENTITY(INT, 100, 2) AS NEW_ID,
 [PersonType],
 [NameStyle],
 [Title],
 [FirstName],
 [MiddleName],
 [LastName],
 [Suffix]
INTO TEMPTABLE
FROM [AdventureWorks2019].[Person].[Person];

sp_help 'TEMPTABLE'

LAG provides access to a row at a given physical offset that comes before the current row. Use this analytic function in a SELECT statement to compare values in the current row with values in a previous row.
DENSE_RANK
LAG
COALESCE
sp_who2
sp_lock
NOLOCK
NTILE
FIRST_VALUE
LAST_VALUE, CONCAT_WS, @@ROWCOUNT

image1.png
&8 HumanResources.Em|
B8 HumanResources.Em|
B8 HumanResources.Em|
B8 HumanResources.Jotj
B8 HumanResources Shi
B8 PersonAddress
B8 Person AddressType
B8 Person BusinessEnti
B8 Person BusinessEnti
B8 Person BusinessEnti
&8 Person ContactType
&8 Person CountryRegio|
&8 Person EmailAddress|
B8 Person.Password

B8 Person.Person

B8 Person.PersonPhone

New Table...
Design
Select Top 1000 Rows

Edit Top 200 Rows

Script Table as

View Dependencies

Memory Optimization Advisor

Indid Type Resource Mode Status

0
0
0

DB s GRANT
a8 IS GRANT
a8 SchS GRANT

Define Full-Text Index...

BB Person.PhoneNumbe]

Encrypt Columns... Enable Full-Text index.

Full Text index Disable Full-Text index.
Storage Delete Full-Text index.
Policies Start Full Population

Facets Start Incremental Population
Start PowerShell Stop Population

Reports Track Changes Manually

image2.png
R

Select an Index
You must select a unique index for this table.

This index poses a unique constraint on a single table/view column and is used to participate in joins.

using the SQL Server Query Processor.

Unique index: PK_Department DeparimentD.

i) Only valid indexes are available.

Help <Back

Next >

Cancel

image3.png
e L L COCLIC AL O] |

@ Full-Text Indexing Wizard

Select Table Columns

- [m}

Select the character-based or image-based columns you want to be eligible for full-text queries.

Available Columns #
[Class

[Color

Name

ProductLine
ProductNumber

Size
SizeUnitMeasureCode
Style
WeightUnitMeasureCode

Language for Wor.

]u]/u]s]s]

Type Column

Help <Back

Next >

Statistical Semantics

Ooooooooo

Cancel

X

image4.png
FFFFFFFAFFIFFFSCFFAR

E

U LR IS

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL
NULL
NULL

CaaaNaO-s0OacOoONGaN

